Os sistemas baseados em regras também são conhecidos por sistemas periciais e, frequentemente, por sistemas baseados em conhecimento. É um sistema de apoio à decisão que procura representar o modo de raciocínio e o conhecimento utilizado por especialistas na resolução de problemas no seu âmbito de especialidade. Ou seja, existe um paralelismo entre estes sistemas e a forma como os especialistas humanos atingem um alto nível de desempenho, na medida em que estes conhecem muito bem as suas áreas de especialização.
Um dos primeiros sistemas baseados em regras conhecidos foi o MyCin, que foi desenvolvido na década de 70 na Universidade de Stanford e tinha como objectivo fazer o diagnóstico de doenças infecciosas através de dados sanguíneos e recomendar os antibióticos apropriados.
Um sistema baseado em regras é um modelo que utiliza regras explícitas para expressar o conhecimento do domínio de um problema e permite, através da confrontação do conhecimento existente com factos conhecidos sobre um determinado problema, inferir regras relativas a esses factos.
Constitui uma espécie de base de dados que, em vez de dados, contém as regras do sistema. As regras assumem a forma de: Se x então y, em que x é a descrição de determinada situação e y é a acção desencadeada como consequência.
Serve para guardar temporariamente factos iniciais e conclusões intermédias ou hipóteses.
É o front-end do sistema, onde se introduz os factos do problema e se recebem os resultados ou conclusões retiradas pelo sistema.
É o algoritmo que vai procurar fazer o “matching” (correspondência) dos factos iniciais do problema colocado (guardados na memória) com as regras existentes na base de conhecimento a fim de “disparar” a regra que melhor se aplica a esse facto. Quando há um match entre um facto do problema e uma regra, é feita a instanciação da regra e, se não existir conflito com outras regras derivadas de outros factos, esta é seleccionada e guardada novamente na memória ou, caso não existam outros factos para analisar, enviada para a interface com o utilizador.
A figura seguinte exemplifica o funcionamento de sistema.
Uma das grandes vantagens deste tipo de sistema é a possibilidade de substituir a base de conhecimento, mantendo as restantes componentes, para se ter um novo sistema pericial de um diferente domínio do problema. A explicabilidade da solução é também uma das grandes vantagens a salientar, pois a aplicação de modelos num contexto de negócio pretende-se o mais transparente possível para que a decisão tomada seja claramente entendida por todos os intervenientes. Por outro lado, se estivermos perante um problema que se estruture em demasiadas regras, a sua abordagem via este tipo de sistemas pode ser de difícil implementação.
Sistemas periciais vs Árvores de Decisão
Os sistemas periciais implicam uma estruturação prévia do conhecimento (com base em regras, como vimos) que permite deduzir novos dados. As técnicas de Data Mining podem ser encaradas como o inverso: permitem “vasculhar” a memória que reside nos dados e descobrir padrões e regras significativas. Numa perspectiva de extracção de conhecimento bottom-up, não existem pressupostos e é dada aos dados a oportunidade de se expressarem.
A extracção de conhecimento pode ser:
- não-supervisionada: não existe um alvo, pedimos à heurística/algoritmo para identificar nos dados padrões significativos. A segmentação de uma base de dados de clientes é um dos exemplos de aplicação da aprendizagem não supervisionada, pois apesar de o output final ser a constituição de agrupamentos de clientes com base em semelhanças, não existe uma classificação pré-definida. O K-means é um dos métodos mais usados neste tipo de problemas de negócio.
Retomando a temática das Árvores de Decisão iniciada nas aulas, vimos como uma das suas principais vantagens é a extracção de regras, que podem facilmente ser expressas em linguagem corrente, de modo a serem bem compreendidas pelos analistas e pelos gestores. Apesar de muitas vezes não ser fundamental conhecer a forma de funcionamento do modelo, existem problemas onde a possibilidade de explicar as razões que justificam determinadas decisões é essencial.
Se nos Sistemas Periciais é fundamental envolver os peritos para explicitar as regras que expressam o conhecimento do domínio de um problema, com as Árvores de Decisão o processo é o inverso. As Árvores de Decisão abordam o processo de extracção de conhecimento numa perspectiva de indução, ou seja, há uma generalização dos padrões encontrados nos dados que depois se traduzem em regras, sem existir um conjunto de premissas formuladas inicialmente sobre as relações entre objectos.